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Species containing multiple bonded heavier main group elements Scheme 1

are important precursors for a variety of new reactions. Especially NAf 1/8.Sq N s

of great interest are compounds with halides, where the halides e ——— C >G§

can easily be replaced to synthesize a plethora of new compounds. N\/ Ny toluene N
Ar Ar

Over the past few decades, the double bonds between heavier main N %‘& ™
group elements had been considered to be unstable due to their ' MesStF N g
weak z-bonds. However, in 1981, compounds with=&l!, Si= l
Si?, and P=P® bonds were prepared by taking advantage of the Ar N
; i N Ar 'y
protection from the bulky ligands. After that, remarkable progress C N 1/8 S N 5
has been made in the chemistry of multiple bonded compounds of N \eF >
heavier main group elements. In recent years, interest in the “Ar
chemistry of double bonded species between group 14 and 16 2 4
heavier elements M E (M = Si, Ge, Sn; E= S, Se, Te), analogues
of ketone, has remarkably increaseBixamples such as Si (E
5 = —12 —
S)» Ge .(E S, Se, Tef, "2 and Sn (E. S, Se, Ty have been . analysis, EI-MSIH, and'®F NMR. All results are in accord with
synthesized and structurally characterized. In contrast, the chemistry, .
of compounds involving multiply bonded elements bearing halides the corresponding formufé
P ) 9 Py gha The solid-state structures & 4, and5 were determined by
was neglected; only one example was recently reported without _. . : ) .
. e ) . . single-crystal X-ray diffraction. Compoun8 crystallizes in the
structural investigatio&! We were interested in the preparation of . S
. : P2,/c space group, whilel and5 crystallize in the space group
the heavier chalcogen analogues of alkanoyl halide MKCH, as 18 P
. . . P2,/n.1® The structures 08, 4, and5 are shown in Figures-13.
potentially important precursors, for the synthesis of compounds . .
- . . Selected bond lengths and bond angles are given in the legends.
containing double bonded heavier main group elements. The _. .
Figures 3 show that compound8—5 are monomeric. The

preparaion fastale german () choWAECNENAD). LIS, S, L SEOPEUTCE o Lol e
' 2673 ' in a distorted tetrahedral environment.

F{twg(‘g;:g,\liﬁgge;]'zg%%erg?n&gt"e“ dmus(”t)o 2{333%2“3}/::;}22?: The Ge-S bond length (2.053(6) A i8, 2.050(9) A in4, and
2.104(7) A in5), which is shorter than the G¢S single bond length

of RGe=S(X) compounds. Herein, we report on the synthesis of D .

[{HC(CMe(N,)Ar)g} G%(S)X] (Ar= 2,64 PI'2C6|F')|3, X = Cl (3)},/F @ (2.239(1) A)!is in agreement with those (2.063(3_9 And 2.045-

Me (5)) as well as their solid structures. (3) A2 reported for Ge=S. The Ge-S bond length ir8 (2.053(6)
A) is comparable to that id (2.050(9) A) but distinctly shorter

Treatment ofl with elemental sulfur in toluene at ambient .
temperature for 2 days smoothly affordddHC(CMeNAn),} Ge- (0.051 A) than that o5 due to the difference of the electron-

(S)CI] (Ar = 2,6iPrCsHs (3)) in excellent yield (0.49 g, 88%) yvlthdrawmg ability among F, Cl, and Me. This property also
(Scheme 1). Slightly yellow crystals & were obtained from a  Influences the average G&l bond length 4 (1.888 A)=<3 (1.895
toluene solution at-32°C. The fluoro analogugl HC(CMeNAr)} - A) <5(1.941 A)). The Ge-Cl bond length in3 (2.195(7) A) is
Ge(S)F] #), which is expected to have a different reactivity due to  0-10 A shorter than that in the starting mateda?.295(1) A) as

the strong electron-withdrawing property compared to those of other €XPected for the higher oxidation state of the product. TheSe
halides, can be generated by two routes: f@oby the fluorination ~ °ond length ind (1.848(2) A) is in the expected range (1.781(20)
with MesSnF or from2 by the oxidative addition of elemental sulfur ~ © 1.867(14) '&0_)-

(Scheme 1). Both methods yield colorless crystals from toluene ~ 1he geometries as well as the &8 bond length 08, 4, and5
solutions. The reactivity 08 was preliminarily checked by using &€ Vvery close to those of the compounds containing terminal
the smallest alkylation reagent MeLi (Scheme 1). Treatmer& of ~chalcogenido germanium unfté? The compounds reported are
with MeLi led to the formation of{HC(CMeNAr)} Ge(S)Me] 6). stabilized by mtramollecular coordination of a base shown py the
The thus-far known structurally characterized double bonded heavier'®Sonance structure in Scheme 2he short Ge-S bond length in
main group elements are bound to bulky ligands. With this reaction €0mpounds3, 4, andS is indicative for a double bond or a 6&

a small alkyl group was introduced into such a system for the first 9 bond with an additional percentage of ionic character. The Ge

time. Compounds3, 4, and 5 were characterized by elemental Clbond may also influence the 6& bond. For discussion of the
double bond character, compound [Ge{ChHs-2,6-Mes} ]2 may

* To whom correspondence should be addressed. E-mail: hroesky@gwdg.de. be used. In this compound, the multiple character of the-Ge

Ar=26-iPr,CH;
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Supporting Information Available: The detailed synthetic pro-
cedures, analytical and spectral characterization data (PDF). X-ray
crystallographic files (CIF) foB, 4, and5. This material is available
free of charge via the Internet at http://pubs.acs.org.
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Figure 1. Molecular structure o8 in the crystal (50% probability thermal
ellipsoids). Selected bond lengths (A) and angles (deg): G€()) 2.195-
(7), Ge(1)-S(1) 2.053(6), Ge(})N(1) 1.881(1), Ge(IyN(2) 1.910(1);
S(1)-Ge(1)-N(1) 118.87(4), S(3yGe(1)-N(2) 118.33(4), S(1yGe(1)-
Cl(1) 116.82(2), N(1)Ge(1)-N(2) 98.18(6), Cl(1)Ge(1)-N(1) 99.51-
(4), CI(1)-Ge(1)-N(2) 101.54(5).

Figure 2. Molecular structure ofl in the crystal (50% probability thermal
ellipsoids). Selected bond lengths and angles (deg): G&{() 1.848(2),
Ge(1)-S(1) 2.050(9), Ge(1)N(1) 1.892(2), Ge(IyN(2) 1.884(2); S(1y
Ge(1)-N(1) 120.14(7), S(1rGe(1)-N(2) 119.58(7), S(1yGe(1)-F(1)
116.57(8), N(1)-Ge(1)-N(2) 97.69(10), F(1yGe(1)-N(1) 99.07(9), F(1}
Ge(1)-N(2) 99.61(9).

Figure 3. Molecular structure 05 in the crystal (50% probability thermal
ellipsoids). Selected bond lengths and angles (deg): G€X@§) 2.009(2),
Ge(1)-S(1) 2.104(7), Ge()N(1) 1.930(2), Ge(1yN(2) 1.952(2); S(Ly
Ge(1)-N(1) 111.54(5), S(+yGe(1y-N(2) 110.41(5), S(tyGe(1)-C(6)
120.25(6), N(1}yGe(1}-N(2) 94.15(10), C(6yGe(1)-N(1) 107.69(8),
C(6)—Ge(1)-N(2) 109.66(8).

Scheme 2

S Ge—s >

e
bond is open to debate because of the significantly longer@ze
bond length compared to those of other digermenes.

In summary, compoundsand4 are the structurally characterized
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examples with a formal double bond between group 14 and 16
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